当前位置:范文大全 > 公文范文 > EZH2在慢性髓细胞性白血病大鼠中调控机制分析

EZH2在慢性髓细胞性白血病大鼠中调控机制分析

时间:2025-08-02 01:59:52 浏览次数:

zoޛ)j馑dh#ak!d} !5IH2Dd}&+(dD	-<ʲk!NlFGDd} ӛ!o2dD	-<?M9d}0ܯ)?Loi۲۲۲۲۲'ngngngngnZ文章编号] 1673-9701(2019)31-0034-04

Analysis of the regulation mechanism of EZH2 in chronic myeloid leukemia rats

ZHANG Baofan   WU Shenghao

Department of Chemotherapy, Wenzhou Central Hospital in Zhejiang Province, Wenzhou   325000, China

[Abstract] Objective To analyze the regulation mechanism of EZH2 in chronic myeloid leukemia rats. Methods 60 SPF-derived Wistar female rats were selected to prepare chronic myeloid leukemia (CML) model. The shEZH2 (EZH2 knockdown) group and the shEZH2+IM group were subjected to EZH2 knockdown test. On the second day of transplantation, IM group and shEZH2+IM group received 100 mg/kg imatinib (IM) solution, shEZH2 group and solvent group received 20% sulfobutyl-β-cyclodextrin (Captisol). After the last administration, the spleen enlargement and nodules of the rats in each group were observed by anatomy. The ratio of myeloid cells to leukemia cells, the proportion of leukemia progenitor cells, the proportion of leukemia stem cells and the expression of mTOR, Akt and PI3K protein in bone marrow were detected. Results The ratio of spleen and bone marrow mesangial cells to leukemia cells in shEZH2 group and shEZH2+IM group was significantly lower than that in the solvent group(P<0.05). The proportion of neutrophil macrophage progenitor cells and common lymphoid progenitor cells in spleen and bone marrow of shEZH2 group and shEZH2+IM group was significantly lower than that in the solvent group (P<0.05). The protein expression of mTOR, Akt and PI3K proteins in rat bone marrow of shEZH2 group and shEZH2+IM group was higher than that in the solvent group, and the difference was statistically significant(P<0.05). Conclusion The knockdown of EZH2 in the transplanted cells of CML rats can effectively reduce the proportion of different subpopulations of CML cells in bone marrow and spleen. The mechanism may be related to the up-regulation of the expression of various proteins in PI3K/AKT/mTOR signaling pathway.

[Key words] Chronic myeloid leukemia; Histone lysine methyltransferase EZH2; Hematopoietic stem cells; Leukemia stem cells

慢性髓细胞性白血病(chronic myelogenous leuke-mia,CML)为造血干细胞(hematopoietic stem cells,HSCs)发生恶性转化而导致克隆增殖性疾病,患者临床表征主要是脾肿大,外周血内白细胞含量持续增多,骨髓极度增生[1-2]。当前,临床对CML患者一线治疗多采用酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)伊马替尼(Imatinib mesylate,IM),这也开创了靶向治疗CML时代[3]。伴随广泛应用IM,临床患者通常很快会出现获得性耐药,进而造成病情迅速发展,出血恶化与复发。相关研究显示,CML患者发生TKIs耐药根源是白血病干细胞(leukemia stem cells,LSCs),机体内LSCs含量非常少,一般为静止期,有自我更新的能力,同时可出现分化障碍,存活对BCR-ABL激酶活性无依赖性,对于TKIs并不敏感[4-5]。组蛋白赖氨酸甲基转移酶EZH2(Enhancers of zeste homologue 2)为多梳抑制复合物2(Polycomb repressive complex,PRC2)核心催化亚基,能够使组蛋白H3赖氨酸27位点出现三甲基化,抑制很多抑癌基因转录,造成出现肿瘤[6-7]。为降低毒副作用影响、使EZH2抑制剂抗肿瘤活性提升,人们合成了针对于S-腺苷甲硫氨酸(S-adenosylmethionine,SAM)竞争性抑制剂,其中GSK126特异性最好。因此,本研究经过分析EZH2在慢性髓细胞性白血病大鼠功能及调控机制,为临床患者诊疗提供一些借鉴。

1 资料与方法

1.1 一般资料

选取SPF级Wistar雄性大鼠2只和雌性大鼠60只,六周龄,购自北京维通利华实验动物公司,许可证号:SCXK(京):2019-14,体重160~180 g,平均(171.22±5.16)g。常规饲养1周后开始实验,大鼠分笼饲养,每个笼内5只,室温维持22℃~26℃,相对湿度55%~65%,昼夜循环,保持12 h光照,大鼠灌胃、添加饲料及换水等都有专人进行。

1.2 实验试剂与仪器

试剂:5-Fu(美国Sigma公司),RPMI 1640培养基(美国Gibco公司),EZH2抗体(美国Cell Signaling Technology公司),溴酚蓝(美国Sigma公司),甘氨酸(上海BBI Life Sciences Corporation),mTOR、Akt、PI3K單克隆抗体(购自美国Cell Signaling Technology公司)。仪器:Synergy多功能酶标仪(美国Bio Tek公司),BD LSRFortessaTM流式细胞仪(美国BD Biosciences公司),分析天平(德国Sartorius公司),超净工作台(苏州净化设备公司),低温高速离心机(德国Eppendorg公司)。

1.3 方法

依据L.C. Gavrilescu等办法,2只雄性大鼠由尾静脉注射剂量为200 mg/kg的5-Fu,4 d后大鼠安乐死,选取后肢股骨,骨关节剪除,骨髓腔露出,吸取骨髓冲洗液,对骨髓腔反复冲洗,采集骨髓细胞。96孔板内放置红细胞裂解液40 mL,再置入骨髓细胞10 mL混匀,冰上孵育6 min,台盼蓝溶液50 mL置入,对细胞计数骨髓刺激液离心后重悬,细胞含量调节成2×106个/mL。采集细胞,离心8 min后置入逆转录病毒感染液,而后再加入polybrene 4 mL及HEPES 40 mL,对预刺激骨髓细胞重悬,细胞含量调节成1×106个/mL,铺设于6孔板内,离心后将6孔板底内细胞轻轻吹起,在37℃下孵育4 h,离心后上清液倒掉,每孔内置入骨髓刺激液4 mL,培养过夜行二次感染,离心后置入红细胞裂解液40 mL在冰上裂解8 min,40 mL PBS重悬后对细胞计数,细胞含量调节成2×106个/mL。随机选取60只雌性大鼠由尾静脉移植骨髓细胞液500 mL,同时采用550 cGy辐照,饲养2周后雌性大鼠出现CML。

雌性大鼠随机分成IM组、溶剂组、shEZH2(EZH2敲低)组和shEZH2+IM组,各15只。shEZH2组和shEZH2+IM组大鼠行EZH2敲低实验,依据上述操作感染shRNA。移植第2天,IM组、shEZH2+IM组灌胃剂量为100 mg/kg的伊马替尼(IM)药液,shEZH2组、溶剂组灌胃20%的磺丁基-β-环糊精(Captisol),1次/d,连续给药14 d。

1.4 观察指标

1.4.1 髓系细胞与白血病细胞比例  选取大鼠骨髓和脾脏,流式细胞仪检测各组大鼠髓系细胞与白血病细胞比例、白血病祖细胞比例,有限稀释法检测各组大鼠白血病干细胞比例情况。

1.4.2 骨髓mTOR、Akt及PI3K蛋白表达  Western-blot检测大鼠骨髓内mTOR、Akt及PI3K蛋白表达量,选取大鼠骨髓组织研磨,经过组织裂解后上样电泳。半干电转移仪于PVDF膜内行蛋白质电转移,恒流为30 mA,连续90 min。PVDF膜取出后采用5% TBST脱脂奶粉封闭,震荡60 min。结束封闭后采用TNS-T漂洗液洗膜10 min,3次,把膜转移到杂交袋内,加入适量漂洗液稀释抗体,封口后在4℃下孵育过夜;TBST漂洗液洗膜10 min,3次,在加入漂洗液稀释的辣根过氧化物酶标记二抗,震荡60 min。PVDF膜放置在ECL显色液内震荡温育5 min,暗室下曝光、显影及定影。

1.5 统计学方法

采用SPSS19.0统计软件进行数据分析,计量资料用(x±s)表示,两组间比较采用t检验,多组间计量资料比较采用方差分析,P<0.05为差异有统计学意义。

2 结果

2.1 敲低EZH2对大鼠脾脏和骨髓内髓系细胞与白血病细胞比例影响情况比较

shEZH2组及shEZH2+IM组大鼠脾脏和骨髓内髓系细胞与白血病细胞比例较溶剂组显著降低,差异有统计学意义(P<0.05)。见表1。

2.2 敲低EZH2对大鼠骨髓和脾脏内白血病干细胞比例影响情况比较

shEZH2组及shEZH2+IM组大鼠脾脏和骨髓内GFP+LSK、GFP+LT-SHCs及GFP+ST-HSCs细胞含量较溶剂组显著降低,差异有统计学意义(P<0.05)。见表2。

2.3 敲低EZH2对大鼠骨髓和脾脏内白血病祖细胞比例影响情况比较

shEZH2组及shEZH2+IM组大鼠脾脏和骨髓内中粒细胞巨噬细胞祖细胞、共同淋巴系祖细胞比例较溶剂组显著降低,差异有统计学意义(P<0.05)。见表3。

2.4 各组大鼠骨髓内mTOR、Akt及PI3K蛋白表达状况比较

shEZH2组及shEZH2+IM组大鼠骨髓内mTOR、Akt及PI3K蛋白表达较溶剂组升高,差异有统计学意义(P<0.05)。见表4。

3 讨论

白血病干细胞(LSCs)为CML患者出现TKIs耐药根源,其一般被定义成BCR-ABL+CD34+CD38-原始祖细胞[8-9]。目前,越来越多研究显示,即便在获得完全分子生物学缓解CML患者机体内依然能够检测到BCR-ABL+LSCs,并最终会造成CML复发,所以将LSCs靶向清除可能为治愈CML有效策略之一[10-12]。尽管LSCs存活对BCR-ABL激酶活性无依赖性,但会受到多条信号路径的调节,包含TGF-β、Notch及Wnt/β-catenin等。许多肿瘤细胞内EZH2表现为功能性获得性突变或者高表达,同时上述变化和患者的不良预后联系紧密。EZH2为保持很多CSCs功能必需的(包含急性髓细胞性白血病、乳腺癌、神经胶质瘤及胰腺癌等)。EZH2还能够调控很多条对CSCs有关键作用的信号路径,包含STAT3、Notch及Wnt/β-catenin等。近期有研究显示,EZH2敲除能够对LSCs自我更新和存活抑制,增大了LSCs对IM敏感性[13-15]。

CML大鼠体内祖细胞和GFP-HSCs含量能够反映正常造血细胞含量,本文研究显示,shEZH2组及shEZH2+IM组大鼠脾脏和骨髓内髓系细胞与白血病细胞比例较溶剂组显著降低,shEZH2组及shEZH2+IM组大鼠脾脏和骨髓內GFP+LSK、GFP+LT-SHCs及GFP+ST-HSCs细胞含量较溶剂组显著降低,shEZH2组及shEZH2+IM组大鼠脾脏和骨髓内中粒细胞巨噬细胞祖细胞、共同淋巴系祖细胞比例较溶剂组显著降低,差异有统计学意义,说明敲低EZH2可显著抑制白血病HSCs含量。CML细胞内,BCR-ABL可连续激活PI3K/AKT/mTOR信号路径,并在CML细胞增殖和存活中有重要影响。虽然IM敏感CML细胞内PI3K/AKT/mTOR能够被IM抑制,但IM长期处理所形成IM耐药内PI3K/AKT/mTOR路径则被明显激活[16]。同时,激活PI3K/AKT/mTOR信号路径还会受到其他一些信号路径的控制,BCR-ABL非依赖性PI3K/AKT/mTOR路径激活可能为CML细胞对于IM天然耐药主要因素。相关研究显示,CML细胞内对PI3K/AKT/mTOR信号路径抑制则可使耐药细胞对IM敏感性增大。本文研究显示,将EZH2敲低可抑制PI3K/AKT/mTOR信号路径,说明敲低EZH2降低CML大鼠骨髓及脾脏内各项细胞比例可能和PI3K/AKT/mTOR信号路径被抑制有联系。由于时间和人力等条件限制,本研究中部分数据难免存在偏颇,今后还需进一步学习相关理论知识,进行更深入分析。

综上所述,敲低CML大鼠移植细胞内EZH2,可有效降低骨髓和脾脏内CML细胞不同亚群细胞比例,其作用机制可能和上调PI3K/AKT/mTOR信号通路内各蛋白表达有关。

[参考文献]

[1] 黎韵瑶,陈纯.急性髓细胞白血病甲基化改变及临床治疗的研究进展[J].国际输血及血液学杂志,2018,41(1):30-36.

[2] 程艳红,徐修才.慢性髓细胞性白血病耐药机制的研究进展[J].实用医学杂志,2018,34(11):521-524.

[3] Zhou J,Nie D,Li J,et al. PTEN is fundamental for elimination of leukemia stem cells mediated by GSK126 targeting EZH2 in chronic myelogenous leukemia[J]. Clinical Cancer Research,2018,24(1):17-22.

[4] 刘杨,余康捷,王哲,等.组蛋白甲基转移酶EZH2和MLL2在弥漫大B细胞淋巴瘤中的最新研究进展[J].现代肿瘤医学,2018,26(10):1634-1638.

[5] G?llner S,Oellerich T,Agrawalsingh S,et al.Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia[J]. Nature Medi-cine,2017,23(1):69-78.

[6] 吴家林,陈香宇,田钦.急性病毒感染条件下组蛋白甲基化转移酶EZH2对CD4+T细胞mTOR信号通路的影响[J].免疫学杂志,2019,7(4):304-308.

[7] Min C,Moore N,Shearstone JR,et al. Selective inhibitors of histone deacetylases 1 and 2 synergize with azacitidine in acute myeloid leukemia[J]. Plos One,2017,12(1):128-132.

[8] 徐金升,高少輝,白亚玲,等.干扰组蛋白赖氨酸甲基转移酶SET8对肾透明细胞癌786-O细胞增殖的影响[J].中华肿瘤防治杂志,2017,24(8):524-528.

[9] Zhang G,Zhang L,Yang X,et al. High ETS2 expression predicts poor prognosis in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation[J].Annals of Hematology,2018,11(8):1-7.

[10] Fujita S,Honma D,Adachi N,et al.Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia[J].Leukemia,2018,32(4):855-859.

[11] 王珍珍,邱少伟,王建祥.治疗急性髓细胞白血病新药的研究进展[J].国际输血及血液学杂志,2017,40(2):169-173.

[12] Bapat A,Keita N,Martelly W,et al. Myeloid disease mutations of splicing factor SRSF2 cause G2-M arrest and skewed differentiation of human hematopoietic stem and progenitor cells[J]. Stem Cells,2018,36(11):204-208.

[13] 李正发,刘伟,杜云云,等.异基因造血干细胞移植治疗慢性髓细胞性白血病监测染色体核型及融合基因表达[J].中国组织工程研究,2017,21(29):4691-4696.

[14] Kandarpa M,Wu YM,Dan R,et al. Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis[J]. American Journal of Hematology,2017,92(6):555-559.

[15] 宋磊,徐鑫,赵瑶,等.组蛋白去甲基化酶KDM3B在急性髓系白血病中的靶基因鉴定[J].现代肿瘤医学,2018, 26(8):307-311.

[16] 张玉峰,刘红玉.药物基因组学在慢性髓细胞白血病靶向治疗中的研究进展[J].国际输血及血液学杂志,2017, 40(40):425-428.

[17] Najafabadi MM,Shamsasenjan K,Akbarzadehalaleh P. Angiogenesis status in patients with acute myeloid leukemia:From diagnosis to post-hematopoietic stem cell transplantation[J]. International Journal of Organ Tran-splantation Medicine,2017,8(2):57-67.

[18] Yu T,Wang Y,Hu Q,et al. The EZH2 inhibitor GSK343 suppresses cancer stem-like phenotypes and reverses mesenchymal transition in glioma cells[J]. Oncotarget, 2017, 8(58):98348-98359.

[19] Razmkhah F,Soleimani M,Mehrabani D,et al. Leukemia microvesicles affect healthy hematopoietic stem cells[J]. Tumour Biol,2017,39(2):2234-2238.

[20] Xu DD,Ying W,Zhou P J,et al. The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells[J]. Frontiers in Pharmacology,2018,9(5):687-690.

(收稿日期:2019-05-27)

相关热词搜索: 白血病 调控 大鼠 细胞 机制