24.4 弧长和扇形面积
第二课时
一、教学目标
(一)学习目标
1.了解圆锥母线的概念,探索并理解圆锥侧面和全面积计算公式;
2.会灵活应用圆锥侧面积和全面积计算公式解决问题.
(二)学习重点
探究圆锥侧面积和全面积的计算公式.
(三)学习难点
应用圆锥侧面积和全面积计算公式解决问题
二、教学设计 1.自主学习
(1)弧长计算公式和扇形面积计算公式回顾
师问:上节课我们学习了弧长计算公式和扇形面积计算公式,你们还记得它们是怎样的吗? 生答:弧长l=半径)
生答:扇形面积S=(2)圆锥的再认识
(教师出示一组生活中含圆锥形物体的图片) nR2,(其中n表示扇形圆心角的度数,R表示扇形所在圆的半径) 360nnR2R=,(其中n表示弧所对的圆心角的度数,R表示弧所在圆的360180
师问:上面的物体中,有你熟悉的立体图形吗? 生答:圆锥体
师问:非常好,它们都含有圆锥体(如下图),那么什么是圆锥体呢?
1
生答:圆锥是由一个底面和一个侧面组成的,它的底面是一个圆,它的侧面是一个曲面. 师问:我们将圆锥顶点和底面圆周上任意一点连接的线段称作圆锥的母线,那么一个圆锥有多少条母线呢?它们在数量上有什么关系? 生答:有无数条,它们是相等的. 师问:为什么是相等的呢?
生答:由勾股定理,每条母线l=h2r2,h表示圆锥的高,r表示底面半径,对于同一个圆锥体,h和r的长是固定的,因此母线的长也是固定的.
师:非常好!我们不仅知道母线长度是相同的,而且还了解了有关母线的一条非常重要的性质:母线l、圆锥高h、底面半径r之间满足:l2h2r
2【设计意图】本节课探究的圆锥的侧面积和全面积,因此有必要重新认识圆锥,另外,本节课必须使用到上节课学习的弧长计算公式和扇形面积计算公式,因此也有必要回顾这两个公式,为本节课教学内容顺利进行做铺垫.
二、合作交流
师:大家分析得非常好,接下来请大家以小组为单位,完成下列问题串:
如图,沿圆锥的一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形, (1)设圆锥的母线长为l,底面圆的半径为r,如图所示,那么这个扇形的半径为________;
(2)扇形的弧长其实是底面圆周展开得到的,所以扇形弧长为________;
(3)因此圆锥的侧面积为________,圆锥的全面积为________
l
2
(学生先独立思考,再小组合作完成,并展示) 归纳:
①如上图,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2r,根据上节课学习的扇形面积公式S扇形半径)可知:该圆锥的侧面展开图的面积是S侧1lR(其中l表示扇形的弧长,R表示扇形212rlrl;
2②圆锥的侧面积与底面积之和称为圆锥的全面积,表示为:
S全S侧S底=rlr2r(lr)
③通过上面两个公式,我们可以看到,只要知道母线、底面半径就可以求圆锥的侧面积的全面积. 3.展示提升
如图,玩具厂生产一种圣诞老人的帽子,其帽身是圆锥形,母线SB=15 cm,底面半径OB=5 cm,要生产这种帽身10000个,你能帮玩具厂算一算帽身至少需多少平方米的材料吗?(取3.142)
【知识点】圆锥侧面积在生活问题中的应用 【数学思想】数形结合
【解题过程】解:∵母线SB=15 cm,底面半径OB=5 cm ∴一顶圣诞帽需要的材料是51575cm²
∴生产这种帽身10000个,需要7510000750000cm²=75m²≈235.65 m². ∴玩具厂至少需235.65平方米的材料
【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积公式即可,但实际问题需要注意单位问题. 【答案】235.65m2
四、课堂巩固
1、在Rt△ABC中,∠ACB=90o,AC=8,BC=6,将△ABC绕AC
3
所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为(
)
A.30π
B.40π
C.50π
D.60π
2、已知圆锥的底面半径为3,母线为4,则它的侧面积是_______,全面积是________.【知识点】圆锥侧面积的计算
【解题过程】解:∵母线l=4,底面半径r=3 ∴由圆锥侧面积计算公式得:S侧rl=3412 由圆锥全面积计算公式得:S全r(lr)=3(34)21
【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积和全面积计算公式求得. 【答案】12
21 练
3、已知圆锥的底面半径为3,高为4,则它的侧面积是_______,全面积是_______.
4、已知圆锥的母线长是5cm,侧面积是20cm²,则这个圆锥的底面半径是________. 【知识点】圆锥侧面积计算公式的逆用
【思路点拨】已知圆锥的母线、圆锥侧面积,可以逆用圆锥侧面积的计算公式求得圆锥底面半径,实际上圆锥母线、圆锥底面半径、圆锥侧面积三者中可以“知二求一”. 【解题过程】解:∵母线长l=5cm,圆锥侧面积S侧20cm2 ∴圆锥侧面积计算公式:S侧rlr520 解得:r4 ∴底面半径为4cm 【答案】4cm
5、圆锥的底面半径是4,母线长是12,则这个圆锥侧面展开图的圆心角度数是_______. 【知识点】圆锥侧面积的计算,扇形面积的计算
【解题过程】解法一:∵圆锥的底面半径是4,母线长是12 ∴圆锥侧面积=S侧rl41248 设圆锥侧面展开图的圆心角度数为n 所以展开图的面积还可以表示为:∴
n122 360n122=48
解得:n=120 3604 ∴这个圆锥侧面展开图的圆心角度数是120°. 解法二:∵圆锥的底面半径是4 ∴底面周长=248
设圆锥侧面展开图的圆心角度数为n ∵圆锥的母线长是12 ∴侧面展开图的弧长=∴8=n12 180n12
解得:n=120 180∴这个圆锥侧面展开图的圆心角度数是120°.
【思路点拨】圆锥侧面展开图的面积一方面可以通过母线和底面半径来求,即Srl;
另一方面也可以通过扇形本身的面积计算公式来求,即S解这个方程即可得到圆锥侧面展开图的圆心角nnnl2,这样就得到rl=l2,360360360r,其中r表示圆锥底面半径,l表示圆lnnl,这样就得到l=180180锥母线.还可以根据圆锥侧面展开图的弧长来建立等量关系,一方面圆锥侧面展开图的弧长等于底面周长2r;
另一方面圆锥侧面展开图的弧长等于2r,同样可以得到圆锥侧面展开图的圆心角n360r. l【答案】120° 五.课堂小结
(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,圆锥有无数条母线,它们的长度都相等,每条母线l=h2r2(h表示圆锥的高,r表示底面半径).(2)设圆锥的母线长为l,底面圆的半径为r,则该圆锥的侧面展开图的面积是12rlrl.2(3)圆锥的侧面积与底面积之和称为圆锥的全面积,设圆锥的母线长为l,底面圆的半径为S侧r,则S全S侧S底=rlr2r(lr).
5
弧长和扇形的面积 教学设计
姜永娜
教学目标 知识与技能:
1.会计算弧长及扇形的面积。
2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。
过程与方法:
1.通过识图、阅读图形探索弧长、扇形及其组合图形面积的计算方法和解题规律。
2.在探究弧长公式和扇形面积公式的过程中,体会“从特殊到一般”的数学思想方法。
情感态度价值观:在合作交流中体验成功的快乐。
教学重难点
重点:1.计算弧长和扇形面积;
2.利用弧长和扇形面积公式进行计算。
难点:理解公式的推导过程 教学媒体:多媒体 教学过程设计
一、复习引入
已知⊙O半径为R,⊙O的面积S是多少?S=πR2
我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.
扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
你能举例说出生活中的扇形吗?(比如扇子。)
问题1:请同学们观察下图,指出哪部分是扇形,并说出它是由哪条弧和哪两条半径构成?
问题2:请同学们判断,在同圆或等圆中,是否具有相同圆心角的扇形面积也相等呢?
学生同桌讨论,做出正确判断,老师予以补充说明。
结论:在同圆或等圆中,由于相等的圆心角所对的弧相等,所以具有相等圆心角的扇形,其面积也相等。
二、做一做
认识了扇形,我们下面就来一起探究一下已知⊙O半径为R,如何求圆心角n°的扇形的面积
1.教师引导学生迁移推导弧长公式的方法步骤:
设置问题:圆的周长是多少?1°圆心角所对弧的长是多少?90°圆心角所对弧的长是多少?n°圆心角所对弧的长是多少?
学生独立思考,给出答案。
(1)圆周长C=2πR;
(2)1°圆心角所对弧长=
2r90;
12(3)90°圆心角所对弧长=
360r;
. (4)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
n°圆心角所对弧长=归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则2.一起探究扇形面积(教师组织学生对比研究):
(1)圆面积S=πR2;
(2)圆心角为1°的扇形的面积=
1 (弧长公式)
;
r2(3)圆心角为1°的扇形的面积=4
(4)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(5)圆心角为n°的扇形的面积=
.
归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
S扇形=
(扇形面积公式)
3.注意:(1)在应用扇形的面积公式S扇形=表示1°圆心角的倍数,它是不带单位的;
进行计算时,要注意公式中n的意义.n提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)
1S扇形= 2lR 想一想:这个公式与什么公式类似?(小组合作研究)
与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.
三、灵活应用
例 如图,⊙O的半径为10cm。(1)如果∠AOB=100°,求弧AB的长及扇形AOB的面积;
(2)已知BC弧长为25πcm,求∠COB的度数。
学生:利用所学弧长及扇形面积的共式,充分探究,最后教师归纳总结。
解:略。
四、巩固练习:配套练习册40页
1、2.
五、总结
知识:弧长及扇形面积公式
S扇形=,S=lR. 扇形方法能力:迁移能力,对比方法.
六、当堂检测:
1.已知一圆面积为16πcm2,其圆周上一段弧长为3πcm,则其所对圆心角为______. 2.已知一弧长为6πcm,弧所对的圆心角为60°,则扇形的面积为______,
3.已知正三角形边长为1cm,那么以正三角形一边为弦,其外接圆上所对弧长为______. 4.已知一弧长为12πcm,其半径为24cm,那么此弧所对圆周角为______. 七:布置作业
弧长和扇形面积课堂教学设计
教学目标
1,知识与技能 掌握弧长与面积的计算公式,并会用公式解决一些实际问题 2.过程与方法:
经历探索弧长计算公式及扇形面积计算公式的过程,提高探索能力;
知道弧长及扇形面积公式后,能用公式解决问题,训练数学运用能力。
3,情感态度与价值观
通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣,提高学习积极性,同时提高运用能力。
教学重点:
经历探索弧长及扇形面积计算公式的过程;
会用公式解决问题;
教学难点:
探索弧长及扇形面积计算公式;
用公式解决实际问题;
教学过程:
一、创设问题情境,引入新课
我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索。
二、探索研究,获取新知 探究一:教师活动:提出问题
制造弯形管道时,经常要先按中心线计算“展直长度”(教材120页图24.4-1中虚线的长度),再下料,这就涉及到计算弧长的问题。
学生活动:自主探究弧长的计算方法。
教师提示:可以把它分为几个部分,AC和BD的长我们知道,只需要求出AB段弧长,就能得出结果。
师:同学们,你们还记得圆周长的计算公式吗? 生:C=2 R 师:那圆的周长可以看作是多少度的圆心角所对的弧长? 生:是360°所对的弧长。
师:那我们再想,1°的圆心角所对的弧长是多少呢?n°的圆心角呢? 生:1°的弧长=教师总结:
在半径是R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2R,所
nR以n°的圆心角所对的弧长为:
L=
180[教法]:让学生们理解后识记。
图24.4-1中所给的数据,由上面的弧长公式,可得AB弧 的长为 L=100900 ≈1570(mm)。
1802RnR;
n°的弧长= 。
180360探究二:扇形的面积
如下图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
0A B
师:上图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为 n。的扇形面积占圆面积的几分之几?进而求出圆心角的扇形面积。
教师活动:
如果设圆心角是n°的扇形面积为S,圆的半径为R,那么扇形的面积为nR2nRS=,由于这个扇形对应的弧长L=,还可以推出扇形面积的另一个计360180算公式
S=1LR(这个公式最好在教师的引导下由学生推出) 2[教法]:类比弧长的公式的探究方法自主探究扇形的面积的计算方法。
三、典型例题
例1:如图24.4-3,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2)。
OABC
解:如图24.4-3,连接OA、OB,作弦AB的垂直平分线,垂足为D,交 于点C。
∵OC=0.6,DC=0.3, ∴OD=OC-DC=0.3。
在Rt△OAD中,OA=0.6,利用勾股定理可得,
AD=0.3 。
在Rt△AOD中,OD= OA, ∴∠OAD=30°。
∴∠AOD=60°,∠AOB=120°。
有水部分的面积 S=S扇形OAB-S
OAB=1201×0.62-AB×OD 236010.63 ×0.3 2=0.12-≈0.22(m)2
四、课堂练习
1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°,求这段圆弧的半径R(精确到0.1m)。
a为半径的圆相2切于点D、E、F,求图中以D、E、F为顶点的封闭图形的面积。
2.正三角形ABC的边长为a,分别以A、B、C为圆心,以
A DEB E C
五、小结
本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关。计算时要力求细心准确。
《弧长和扇形面积》教学反思
一、教学构思:
本次授课思路:圆周长公式——弧长公式,由此类比导出扇形面积公式。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用教材中的题目引入新课,与学生一起推导弧长与扇形面积的计算公式。由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。
本节课主要内容是弧长及扇形面积的计算。不仅强调学生会运用公式,而且要理解算法的意义。引例的设计主要考虑了学生生活实际,放弃了课本的引例,选择了很多实际问题,特别是自动喷水装置探索其喷灌范围、计算扇子的贴纸部分面积等例子,这样能够激发学生的学习欲望,调动学生积极性,让学生积极动手、动脑,解决实际问题。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。
二、课堂教学反思:
本节课的内容一般来说老师会把重点放在公式的理解和熟练运用上,对于九年级的学生来说这很重要,而且弧长公式和扇形面积公式的推导过程也比较容易理解。但是这样可能导致中等及以下学生因为某些概念、细节的不理解或者不懂,造成学习的障碍。结合学生的实际,认真分析学生可能出现障碍的地方,逐步引导学生观察、比较,从基本的概念入手,处理好各个思维的转折点,在注重基础的同时发展学生的数学能力,关注了全体学生的发展。另外在提问的处理上进行分层,避免死板的教公式、记公式的老套,希望能激发学生思维,体现教师引导者的身份。
针对学生的实际情况,在课堂中关注大多数学生能够参与到教学中来很重要,存在的不足之处是,于九年级的学生来说,成绩较好学生的思维明显受到限制,不能最大限度的培养数学优生的数学思维。如何在关注全体学生的同时让优生最大限度的发展,最终体现课程标准中让不同的人在数学上得到不同的发展的理念,是我们数学课堂教学一直要思考的问题。
本节课的不足还在于时间的分配上不是很合理,由于在学生在探索弧长时我担心引导措施不到位,导致时间过长,后面的教学环节比较吃紧,对学生在新知的应用上没有足够的时间。有待于在今后的教学中注意这方面的问题,以便进一步提高课堂教学效率。
三、教材处理的反思:
《弧长和扇形面积》课后反思:
任何新知识获得,都是要经过“实践——认识——再实践——再认识”的过程,这个过程,本身蕴含着一个再创造的过程。从教学这个意义上来讲,就强调了以学生为中心,引导学生自主学习。同时,培养学生的合作能力。可是上完这节课,我感触颇深,有欣慰的,也有遗憾的。欣慰的是自己对“先学后教”的课堂模式有了进一步的认识;
遗憾的是这堂课存在不少问题。在此我对自己发现的问题进行反思。首先,揭示目标时三言两语,没能使学生产生深刻的印象。其次,对学生实际情况的把握不到位,自认为出现了以下两个问题:一是推导公式的用时多了;
二是对设计的几个问题中的重点引导不足,使部分学生对公式的探究过程仍存在一定的疑点。再次在例题评析时脱离了学生的理解。应该根据学生的疑难进行引导,但我却从自己的理解出发了。接着因上面环节用时过长明显影响了当堂训练的开展。总之,通过对这堂课的反思,发现了问题,这就是收获。只有这样发现问题,找出问题,才能促使自己去探索,去解决问题,在发现和解决问题中提高自身教育教学的水平,使自己的课堂更好的服务于“人人学有用的数学”。
24.1弧长和扇形面积(第1课时)
教学目标 :
1、知识 与技能:理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算;
2、过程与方法:经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。
3、情感与态度:通过联系和运动发展的观点,渗透辩证唯物主义思想方法。 教学重难点:
重点:弧长,扇形面积公式的导出及应用。
难点:用公式解决实际问题。
教学过程:
一、情境导入
在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?
二、课内探究
(一)弧长公式
1、回顾圆弧的定义,并提问“弧是圆的一部分,你会求弧的长度吗?”
2、自主学习,合作探究(5分钟)
(1)半径为R的圆,圆的周长是多少?半圆呢?四分之一圆呢? (2)圆的周长可以看作是多少 度的圆心角所对的弧? (3)1°圆心角所对弧长是多少? (4)n°圆心角所对的弧长是多少?, (点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的弧长为n°的圆心角所对的弧长是1°的圆心角所对的弧长的n倍,n
3、精讲例题
例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)
2πRπR 360180πRnπR即l.180180
4、链接中考
(1)已知圆心角为60°,半径为1,则弧长为 _________ .(2)已知圆心角为120°,弧长为10πcm,则半径为__________ cm. 检查学生练习情况并点评
(二)扇形面积公式
1、扇形的定义并学会判断什么图形是扇形?
2、自主学习,合作探究(5分钟)
(1)如果圆的半径为R,则圆的面积是多少?半圆呢?四分之一圆呢? (2)1°的圆心角对应的扇形面积为 多少?
(3)n°的圆心角对应的扇形面积为 多少?
πR2(点评)根据同学们的解题过程,我们可得到:1°的圆心角所对的扇形面积为
360πR2n°的圆心角所对的扇形面积是1°的圆心角所对的扇形面积的n倍,n即
360nπR2S扇形.360
3、比较弧长公式和扇形面积公式,你能类比扇形面积和对应弧长的关系. 推导并归纳:S扇形4、链接中考
(1)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 _________(结果保留π). (2)已知扇形的面积为2π,半径为3,则该扇形的弧长为_________ (结果保留π). 检查学生练习情况并点评
三、练习
P113 练习第
1、
2、3题
四、小结
通过这节课,你们学习了什么知识?
1、弧长公式
2、扇形面积公式
3、弧长公式与扇形面积公式的关系
4、解决课前问题
在田径二百米比赛中,每位运动员的起跑位置相同吗?这样比赛公平吗?
五、布置作业
习题24.4 第
1、
2、
3、
6、
7、8题 nπR21nπR1RlR
36021802
“弧长与扇形的面积”教学设计
“弧长与扇形的面积”教学设计
姚志刚
(江苏省昆山市第二中学)
教学内容:
苏教版九年级数学145页到147页。
教学目标:
1.通过操作、归纳,会计算弧长和扇形面积。
2.认识特殊— 一般—特殊在获得新知识过程中的重要作用,体验弧长和扇形面积的探究过程。
3.体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。
教学重点、难点:
重点:弧长和扇形面积公式的推导和有关计算。
难点:探索弧长和扇形面积公式及运用。
教学过程:
一、情境创设
1.以二百米赛跑画面引入课题。
2.某社区要请广告公司设计一张扇形的半径为1米的海报,收费标准是每平方米100元,那么社区应付多少钱?
设计意图:用生活中熟悉的情境激发学生的学习兴趣,营造良好的学习氛围,使学生认识到数学总是与现实问题密不可分。
二、主动探索,经历过程
1.半径为r的圆,周长是多少?
2.圆的周长可以看作是多少度的圆心角所对的弧?
3.你能求出半径为r的圆中圆心角分别为180°、90°、45°、1°所对的弧长分别是多少?
教师提出问题,引导学生分析弧长
和圆周长之间的关系,推导出n°的圆心角所对的弧长的计算公式。引导学生层层深入,逐步分析,量提问学生回答,相互补充,得出结论。
设计意图:探索一个新的知识要从学过的知识入手,经历特殊— 一般—特殊的认知过程,寻找它们的联系,探究规律,得出结论。
三、实践应用
1.圆心角为110°,半径为4cm,则弧长是。
2.已知一条弧长为12π,该弧所对的圆心角为120°,则该弧所在圆的半径为。
设计意图:引导学生对所推导出公式进行简单应用,掌握弧长公式中弧长、半径、圆心角三者之间的换算关系。
四、主动探索
(1)创设情境,引出扇形。
(2)扇形定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
(3)判断五个图形是否是扇形。
(4)探索扇形面积公式。
①半径为r的圆,面积是多少?
②圆面可以看作是多少度的圆心角所对的扇形?
③你能求出半径为r的圆中圆心角分别为180°、90°、45°、1°所对的扇形的面积?
④若设⊙O半径为r,n°的圆心角所对的扇形面积为 .
设计意图:学生学以致用,在弧长公式的推导过程中,是由教师引导分析;
而扇形面积公式完全由学生自己推导,锻炼他们的探索新知识的能力,体验成功的快乐。
五、实践应用
1.已知圆弧的半径为50cm,圆心角为120°,则圆弧的弧长是,圆弧组成的扇形面积是 .
2.已知扇形的圆心角为120°,弧长为20π,扇形的面积是设计意图:对公式进行应用,寻找公式中有怎样的数量关
系。
六、记忆公式,并用弧长表示扇形面积
(1)比较扇形面积与弧长公式,你能用弧长表示扇形面积吗?
(2)见到这个公式,同学们能联想到什么面积公式?
设计意图:加强学生交流合作,并在合作交流的基础上尝试推导出扇形的面积和弧长之间的关系。
七、巩固拓展
1.把Rt△ABC的斜边AB放在直线l上,绕点B顺时针方向旋转,使点C落在直线l上的点C′处,设BC=1,
(1)求在此运动过程中,点A所经过的路线长。
(2)求在此运动过程中,△ABC所扫过的面积。
2.如图1,圆A、B、C、D、E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则五个扇形(阴影部分)的面积之和为 .
3.如图2,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是______.
设计意图:通过拓展练习,培养学生实践能力,使他们的思维能力有所提升。
八、总结评价
1.谈谈这节课你学到了什么?有什么不明白的地方?
2.利用本节课所学,你能提出哪些问题?
九、教学反思
本节课从学生熟悉的问题情境引入,激发了学生的学习兴趣。在探究弧长和扇形的面积,通过从特殊到一般的思维方法、小组合作,符合新课程的教学理念。培养学生应用数学、探究总结和创新能力。由于内容不是很难,所以要求学生积极参与。在课堂教学中,坚持让每个学生做些练习,强化课堂练习,
提高解决问题的能力。
24.4弧长和扇形面积 ——扇形面积一课的教学反思
柳州市融安县长安镇第一中学 陈灵群
本节课内容是新人教版九年级第24章第四节的第二课时,教学目标:
1、经历扇形面积公式的探索过程;
2、会利用扇形面积的计算公式进行计算;
3、渗透辩证的观点和转化的思想。教学重点:扇形的面积的计算。教学难点:利用扇形面积公式计算阴影图形的面积。教材是把弧长和扇形面积放在一课时授完,本人考虑到本班学生的基础比较差,一节课讲完弧长和扇形面积公式的探索过程和利用公式进行计算,学生是吃不消的,但实际教学下来,我们总是需要两课时处理,学生才能把两个公式掌握好。因此,还不如一节课就掌握一个公式,这样学生易于接受新知识,也增强对数学学习的兴趣。
通过上这节课,本次我的授课思路是:复习圆周长公式——弧长公式,由此由圆面积公式类比导出扇形面积公式。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用以下的题目引入新课,与学生一起探索出扇形面积的计算公式。
一、温故知新:
1.圆的周长公式是 。2.圆的面积公式是 。
3.什么叫弧长?弧长公式是 。
4、什么叫扇形?
二、自主学习:圆的面积可以看作 度圆心角所对的扇形的面积;
1、设圆的半径为R,180°的圆心角所对的扇形面积S扇形=_______。
2、设圆的半径为R,90°的圆心角所对的扇形面积S扇形=_______。
3、设圆的半径为R,45°的圆心角所对的扇形面积S扇形=_______。
4、设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______。 „„
5、设圆的半径为R,n°的圆心角所对的扇形面积S扇形=_______。
6、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?
三、新知掌握。利用扇形面积计算公式完成以下题目.
1、若扇形的圆心角n为50°,半径为R=1,则这个扇形的面积,S扇= ;
2、若扇形的圆心角n为60°, 面积为2,则这个扇形的半径R= ;
3、若扇形的半径R=3, S扇形=3π,则这个扇形的圆心角n的度数为 ;
4、若扇形的半径R=2㎝,弧长l4㎝,则这个扇形的面积,S扇= ;
3四、典型例题:(教科书第111页例1)
如图:水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m.
求截面上有水部分的面积(精确到0.01m2).
五、巩固新知:
1、教材122页练习第1题,
2、教材122页练习第2题,
3、习题24.4第1题填空。(答案写在教材上)
六、收获和小结:
1、弧长的计算公式
2、扇形面积计算公式
nnrn12rsr2或slr3601803602通过上这节课,我认为自己在以下几方面是值得肯定的:
l
1、注重了学生的学情。我们的学生大部分学习比较被动,思维灵活的学生少,学习能力不强,做题速度慢,他们所掌握的知识就局限于老师上课讲的内容,没做过、没讲过的题目基本不会做,一节课所学的内容不能多、不能快,宁可慢点,小步伐,带领学生逐一突破难关。
2、教材的处理比较恰当。尽管教材已尽所能安排好教学内容和课时,但毕竟城乡学生素质有差异,教师要根据学生的具体学情进行恰当处理教材。学生难理解、难掌握的内容,可以通过增加课时,分散难点,强加练习。如“弧长与扇形面积”这节课需要花两课时,第一课时只学一个公式,通过做大量练习巩固公式,提高计算能力,提高了自信心,到了第二课时学扇形面积公式时,利用类比的方法,学生自然就会由圆面积公式探索出扇形面积计算公式了。同时设计一些简单的计算题,已知n、R求扇形面积s,已知 n、扇形面积s求R,已知l、R求扇形面积s等等。
3、突出重点、分散难点、注重数学的严密性。在讲解例题1时,由于例题的解答不是直接套用扇形面积公式,所以需要教师的引导过程,并且这个过程需要逐步引导、逐个突破。在形成一定的解答思路后,师生共同完成解答。引导学生:截面上有水的部分是指哪一部分,弓形的面积如何求?学生自然会想到弓形面积等于扇形面积减去三角开面积,从而就会想到 如何构建数学模型,如何添加辅助线?引导学生“过点O作AB的垂线,交弦AB于点D,交
2 AB弧于点C,同时让学生明白哪一条线段的长是0.3m,这道题是一道综合性很强的题目,它需要利用到垂径定理、弓形的高、三角形和扇形的面积计算公式、以及求扇形的圆心角时,还要用上在直角三角形中,300所对的直角边等于斜边的一半这个定理的逆定理,但这个定理,新教材没有直接给出,我们只能强加给学生 。而且又没有学习三角函数,如果学习了三角函数,那么就可以利用三角函数来求角度。”教材在解答中是直接作弦AB的垂直平分线且默认经过点O,这一处理就不是非常严密和科学。
4、重视教师的教学观。教师是重在培养学生能力,还是重在防止学生犯错?以本节课为例,计算半径、圆心角很麻烦,把有关数值直接代入弧长、扇形面积公式后要约分、变形,转化为解一元一次方程,由于许多学生基本技能不过关,有些老师为防止学生这个犯错那个犯错干脆把公式变形,推出计算半径、圆心角的公式,让学生背公式,这样学生就能直接代入数据得出半径、圆心角。但事实上,我个人觉得这样的做法不好,随着时间的推移,学习的内容越来越多,公式越来越多,让学生背太多公式会增加学生负担,我是这样做的,在一开始学习弧长、扇形面积公式时,就让学生根据其中两个量直接代入公式,通过解方程求第三个量。刚开始时,学生解起来很慢,甚至不会解,但是经过老师耐心训练,学生慢慢熟能生巧,也能很快很准确地解出来,从而提高学生计算能力。
5、在新课程理念下,强调了几何建摸过程和几何推理的要求要发生变化。图形由于自身的特点,较之其他的数学模型更加直观、形象,更易于从现实情景中抽象出数学的概念、理论和方法。在课堂中我改变以往那种教师讲学生听、教师问学生答的传统的教学方法,让学生随时动手,把所有的学生都调动参与到活动中来,充分调动了学生的积极性,让学生通过小组讨论,合作探究、动手操作等方法让学生巩固了公式的形成过程,这完全符合新课程所倡导的“以学生为主体,教师为主导”的教学理念。
尽管我上的这节课有以上值得肯定之处,但仍然存在以下几点不足之处:
1、由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。
2、课堂节奏把握得不够准确,讲解例题时所花时间过多,导致最后的练习不够充分。
3、鼓励性语言使用得还不够多。在以后的教学中,不但要利用口头语言,还要利用肢体语言进行对学生的鼓励。
虽然也存在一些不足之处,但我还是认为这节课较好地实现了知识与技能目标,对于过程与方法和情感态度与价值观目标的实现也非常到位,是比较成功的。
在今后的教学中,我将不断追求更高目标,努力使自己的课堂教学更加生动、活跃 ,使学生真正在快乐中学习,享受学习的快乐。
24.4.1弧长和扇形的面积
钦南区丽光学校:吴春明
教学目标 (一)知识目标
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题. (二)能力目标
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力,能用公式解决问题,训练学生的数学运用能力。
(三)情感与价值观
1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
探索弧长及扇形面积计算公式的过程. 教学难点
用公式解决实际问题. 教学过程
Ⅰ.创设问题情境,引入新课
[师] 老师想将扇子的边缘贴上金纸边,买多长比较合适? 帮老师解决这个问题?哪位同学可以 [生]学生各抒己见,说出解决问题的方法 引入课题:弧长和扇形面积 Ⅱ.新课讲解
一、探索弧长的计算公式
(1)提问:
1.半径为R的圆,周长是多少?
2.圆的周长可以看作是多少度的圆心角所对的弧? 3.1°圆心角所对弧长是多少? 4.2°圆心角所对弧长是多少? 5. 3°圆心角所对弧长是多少? . . .n°的圆心角所对的弧长是多少?
(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R, n°的圆心角所对的弧长公式为
注意:进行计算时,公式中的数,不带单位。
(3)弧长公式的运用 巩固提升
(一)
2、已知90°的圆心角所对的弧长为2πcm,则此弧长所在圆的半径是 cm
(4)例题讲解
PPT展示例题:先让学生自主学习,教师最后适当讲解分析。
例
1、制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm) 解:由弧长公式,可得弧AB的长 lnR180n
表示的是1度的圆心角的倍nR l180
因此所要求的展直长度
L27005002970答:管道的展直长度为2970mm
二、探索扇形面积的计算公式
(一)扇形的概念
1、由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
2、会判断某个图形是否是扇形
(二)面积公式的探索
(1)提问:
1.半径为R的圆,面积是多少?
2.圆的面积可以看作是多少度圆心角所对的扇形? 3.1°圆心角所对对应的扇形面积是多少? 4.n°的圆心角所对的弧长是多少?
(2)学生之间相互讨论得出答案,进而推导出⊙O半径为R, n°的圆心角所对应得扇形面积为 S扇形nR2360注意:公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(3) 扇形面积公式的运用
1、已知⊙O的圆心角和半径如图所示,则S扇形AOB =
2、一个扇形的半径为3cm,扇形的弧长为πcm,则该扇形的圆心角是
3、已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是
提问:扇形的面积可否用弧长的方式来表示?若可以,扇形的面积公式还可以如何表示?
【学生】}互相讨论,师生总结,扇形的面积与弧长的关系。
(4)例题讲解
PPT展示例题:老师做相应的提示,逐步引导学生解题。
例
2、如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积。(精确到0.01cm)。
S扇形1lR2
24、已知扇形的半径为24cm,弧长为 20 π cm ,那么这个扇形的面积是________cm
三、综合巩固
学生之间互相讨论学习,教师再讲评 1、(2013年.琼州) 如图1,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是多少?
BADC图1
图2
2、(2014年山东)如图2,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,求图中阴影部分的面积。
3、(2010年玉林)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,求图中阴影部分的面积。
4、
24.4.1弧长和扇形面积说课稿
一、教材分析:
(一)教材的地位与作用“
本节课的教学内容是义务教育课程标准实验教科书新人教版九年级上册新课标实验教材《第24章圆》中的 “弧长和扇形的面积”,这个课题学生在前阶段学完了 “圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的。本课由特殊到一般探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生的学习及生活更好地运用数学作准备。
(二)教学目标和重点、难点
今后根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
教学目标:(1) 了解弧长和扇形面积的计算方法。
(2) 通过等分圆周的方法,体验弧长和扇形面积公式的推导过程。
(3) 体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。
重点:弧长和扇形面积公式的推导和有关的计算。
难点:弧长和扇形面积公式的应用。
(三)教学过程
活动1 设置问题情境引入课题
提出问题,激发学生学习新知识的热情.将学生的注意力牢牢吸引至课堂。从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分。并激发学生的爱国热情。
活动2 探索弧长公式
(1)半径为R的圆,周长是多少?
(2)圆的周长可以看作是多少度的圆心角所对的弧? (3)1°圆心角所对弧长是多少?
(4)若设⊙O半径为R, n°的圆心角所对的弧长为 L ,则
教师提出问题,引导学生分析弧长和圆周长之间的关系,推导出n°的圆心角所对的弧长的计算公式。引导学生层层深入,逐步分析,尽量提问学生回答,相互补充,得出结论。使学生明确探索一个新的知识要从学过的知识入手,找寻它们的联系,探究规律,得出结论。
活动3 巩固弧长公式
一、牛刀小试
1、
2、3、4题
二、实际应用(引课解答)
制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(结果保留∏ )。
提问学生从图中获得哪些信息,通过练习,使学生掌握弧长公式中弧长、半径、圆心角三者之间的关系.对实际问题引导学生分步分析,分步计算。体会数学来源于生活并服务于生活。
活动4 扇形定义 (1)创设情境引出扇形.(2)由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
(3)判断五个图形是否是扇形.观察图片,得出扇形定义,并能准确判断出什么样的图形是扇形。
由观察图片和图形得出概念,记忆较深刻,对熟练判断是否为扇形铺平道路。只有明确定义才能更好的学习更深一层次的知识。
活动5 探索扇形面积公式、记忆公式并用弧长表示扇形面积 (1)半径为R的圆,面积是多少?
(2)圆面可以看作是多少度的圆心角所对的扇形? (3)1°圆心角所对扇形面积是多少?
若设⊙O半径为R, n°的圆心角所对的扇形面积为S,则
学生在探索出弧长公式的基础上,自己尝试寻找探索方法,将扇形面积和圆的面积结合起来,分析得出.n°的圆心角所对的扇形面积公式。
学生要学以致用,在弧长公式的推导过程中,是由老师引导着分析;
而扇形面积公式完全由学生自己推导,锻炼他们的探索新知识的能力。体验成功的快乐。
教师给出两个公式,学生尝试用更好的方法记忆公式。并在合作交流的基础上尝试推导出扇形面积和弧长之间的关系。
活动
6、巩固扇形面积公式
教师出示几个基本的练习题,学生尝试使用公式解决.活动
7、求复杂弧长和不规则图形的面积(数学乐园)
知识要学以致用,特别是要与实际相联系。教师出示幻灯片,求不规则图形面积和旋转图形某点绕过的弧长。学生结合图形分析解体思路,并通过小组合作将分析过程简单的写在答题纸上,请两名同学到前面讲给大家听,对不同的分析思路都给以肯定。
活动8 对大家说你有什么收获?
号召学生自己总结本节课所学知识,相互补充,以进一步巩固所学知识。
通过小结和反思,激发学生主动参与意识,为每个学生创造在数学活动中获得活动经验的机会.
活动
9、布置作业:
教科书114页
1、
2、3题。使学生在课后进一步巩固所学知识。
弧长和扇形的面积集体备课想法
主备人
吴邦杰
一、教材分析:
1、教材的地位与作用
本节课的教学内容是义务教育课程标准实验教科书,新人教版九年级上册新课标实验教材《第24章圆》中的 “弧长和扇形的面积”,这个课题学生在前阶段学完了 “圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的。本课由特殊到一般应用归纳类比的方法探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生在今后的学习及生活中能更好地运用数学作准备。
2、教学目标:
(1) 认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获新知的能力。
(2) 通过思考问题,培养学生动脑的好习惯。
(3) 通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。
3、教学重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。
4、教学难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
二、教法分析
针对初三学生的年龄特点和心理特征,以及他们现有知识水平,通过发现动态形成“弧长和扇形的面积”的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。
三、学法分析
通过教学引导学生关注身边的数学,并借助如何正确理解弧长公式、扇形面积公式的推导。会运用公式计算弧长、扇形及简单组合图形的面积。培养学生的创新能力和概括表达能力,运用通过介绍扇面的文化,渗透艺术文化熏陶和情感的教育。
四、教学过程分析
活动1 设置问题情境引入课题
制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题,通过这一问题引入弧长,引出下面的探索过程。
活动2
探索弧长公式
(1)半径为R的圆,周长是多少?
(2)圆的周长可以看作是多少度的圆心角所对的弧? (3)1°圆心角所对弧长是多少? (4)140°的圆心角所对的弧长是多少?
(5)若设⊙O半径为R, n°的圆心角所对的弧长为 L ,则
l nR180 教师提出问题,引导学生分析弧长和圆周长之间的关系,推导出n°的圆心角所对的
1 弧长的计算公式。引导学生层层深入,逐步分析,问题尽量由学生回答,相互补充,得出结论。使学生明确探索一个新的知识要从学过的知识入手,找寻它们的联系,探究规律,得出结论。
活动3 巩固弧长公式
一、完成“试一试”中的题目
二、实际应用,计算引入新课时提出的问题。
提问学生从图中获得哪些信息,通过练习,使学生掌握弧长公式中弧长、半径、圆心角三者之间的关系.对实际问题引导学生分步分析,分步计算。体会数学来源于生活并服务于生活。
活动4 探索扇形面积公式 (1)半径为R的圆,面积是多少?
(2)圆面可以看作是多少度的圆心角所对的扇形? (3)1°圆心角所对扇形面积是多少?
若设⊙O半径为R, n°的圆心角所对的扇形面积为S,则s扇nR3602
学生在探索出弧长公式的基础上,自己尝试寻找探索方法,将扇形面积和圆的面积结合起来,分析得出 n°的圆心角所对的扇形面积公式。
学生要学以致用,在弧长公式的推导过程中,学生在教师引导下分析得出;
而扇形面积公式完全由学生自己推导,锻炼他们的探索新知识的能力,体验成功的快乐。
活动5 记忆公式并用弧长表示扇形面积
教师给出两个公式,学生尝试用弧长表示扇形面积。在合作交流的基础上尝试推导出扇形面积和弧长之间的关系。
活动6 巩固扇形面积公式
教师出示两个基本的练习题,学生尝试使用公式解决.活动7求不规则图形的面积
知识要学以致用,特别是要与实际相联系。教师出示幻灯片,求有水部分的弓形面积。学生结合图形分析解体思路,并通过小组合作将分析过程简单的写在草稿本上,请位同学进行板演,对在小组中出现不同的分析思路都给以肯定。在学生理解的基础上,讲解解题过程,再跟屏幕上的答案对照,完善。.活动8 课堂小结
号召学生自己总结本节课所学知识,相互补充,以进一步巩固所学知识。
通过小结和反思,激发学生主动参与意识,为每个学生创造在数学活动中获得活动经验的机会.
最后布置作业:
课本第114页习题24.4第
1、2 2
12999数学网(www.dawendou.com)
3.4.1 弧长和扇形的面积
教学目标:
经历探索弧长计算公式及扇形面积计算公式的过程,了解弧长计算公式及扇形面积的计算公式,并会应用公式解决问题. 教学重点:
nπR弧长计算公式及理解,弧长公式ι=180,其中R为圆的半径,n为圆弧所对的圆心角的度数,不带单位.由于整个圆周可看作360°的弧,而360°的圆心角所对的弧长为圆周长C=2πR,所以1°的圆心角所对的1πRnπR弧长是360×2πR,即180,可得半径为R的圆中,n°的圆心角所对的弧长ι=180.
1n2圆心角是1°的扇形的面积等于圆面积的360,所以圆心角是n°的扇形面积是S扇形=360πR.要注意扇形面积公式与弧长公式的区别与联系(扇形面积公式中半径R带平方,分母为360;
而弧长公式中半径R不带平方,分母是180).已知S扇形、ι、n、R四量中任意两个量,都可以求出另外两个量.
1扇形面积公式S扇=2ιR,与三角形的面积公式有些类似.只要把扇形看成一个曲边三角形,把弧长看作底,R看作高就比较容易记了. 学习难点: 利用弧长公式时应注意的问题及扇形面积公式的灵活运用. 学习方法: 学生互相交流探索法.学习过程:
一、例题讲解:
【例1】 一圆弧的圆心角为300°,它所对的弧长等于半径为6cm的圆的周长,求该圆弧所在圆的半径.
【例2】 如图,在半径为3的⊙O和半径为1的⊙O′中,它们外切于B,∠AOB=40°.AO∥CO′,求曲线ABC的长.
【例3】 扇形面积为300π,圆心角为30°,求扇形半径.
12999数学网(www.dawendou.com)----免费课件、教案、试题下载
12999数学网(www.dawendou.com)
【例4】 如图,正三角形ABC内接于⊙O,边长为4cm,求图中阴影部分的面积.
【例5】 如图,等腰直角三角形ABC的斜边AB=4,O是AB的中点,以O为圆心的半圆分别与两直角边相切于点D、E,求图中阴影部分的面积.
【例6】 半径为3cm,圆心角为120°的扇形的面积为( ) A.6πcm 2
222B.5πcm C.4πcm D.3πcm
【例7】 如图,在两个同心圆中,两圆半径分别为2,1, ∠AOB=120°,则阴影部分面积是( )
A.4π 4B.2π C.3π D.π
过B点作BC⊥【例8】 如图,已知⊙O的直径BD=6,AE与⊙O相切于E点,AE,垂足为C,连接BE、DE. (1)求证:∠1=∠2;
(2)若BC=4.5,求图中阴影部分的面积.(结果可保留π与根
号)
【例9】 如图,△ABC是正三角形,曲线CDEF„叫做“正三角形的渐开线”,其中CD、DE、EF的圆心依次按A、B、C循环,它们依次相连接.如果AB=1,求曲线CDEF的长.
⌒⌒⌒
【例10】 如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径连接五个圆心得五边形ABCDE,求图中五个扇形的面积之和(阴影部
12999数学网(www.dawendou.com)----免费课件、教案、试题下载
都是1,顺次分).
12999数学网(www.dawendou.com)
【例11】 如图是赛跑跑道的一部分,它由两条直线和中间半圆形弯内外两条跑道的终点在一直线上,则外跑道起点往前移,才能使两跑度,如果跑道宽1.22米,则外跑道的起点应前移 米.(π取3.14,0.01米)
二、课后练习
1.在半径为12的⊙O中,150°的圆心角所对的弧长等于( ) A.24πcm B.12πcm
C.10πcm
D.5πcm
道组成的.若道有相同的长结果精确到2.如果一条弧长等于ι,它的半径等于R,这条弧所对的圆心角增加1°,则它的弧长增加( )
1A.n πRB.180
180lC.πR
1D.360
3.已知扇形的圆心角为60°,半径为5,则扇形有周长为( )
5A.3π 5B.3π+10 50B.π
5C.6π
25C.π
5D.6π+10 100D.π 4.圆环的外圆周长为250cm,内圆周长为150cm,则圆环的宽度为( )
A.100cm
5.弧长等于半径的圆弧所对应的圆心角是( )
360A.π 2πA.3 180B.π 4πB.3
90C.π 8πC.3
D.60°
6.正三角形ABC内接于半径为2cm的圆,则AB所对弧的长为( )
4π8πD.3或3
7.已知圆的周长是6π,那么60°的圆心角所对的弧长是( )
A.3
πB.3
C.
6
D.π
⌒8.如图1,正方形的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm为半径画弧BD,则图中阴影部分的面积为( )
π2A.2cm π2B.4cm
π
2C.8cm
π2
D.16cm
12999数学网(www.dawendou.com)----免费课件、教案、试题下载
12999数学网(www.dawendou.com)
9.如图2,以边长为a的正三角形的三个顶点为圆心,以边长一半为半径画弧,则三弧所围成的阴影部分的面积是( )
a223πA.8
A.2倍 a223πB.4
B.3倍
a2π
4C.8C.4倍
32aD.4
D.5倍 10.等边三角形的外接圆面积是内切圆面积的( )
11.如图3,一纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长30cm,贴纸部分BD长为20cm,贴纸部分的面积为( )
8002A.3πcm
⌒500π2B.3cm
⌒ C.800πcm
2 D.500πcm
212.一条弧所对的圆心角为120°,半径为3,那么这条弧长为 .(结果用π表示) 13.已知CD的长为20πcm,CD所对的圆心角为150°,那么CD的半径是 .
⌒πR⌒214.半径为R的圆弧AB的长为,则AB所对的圆心角⌒为 ,弦AB的长为 .
15.如图,⊙O1的半径O1A是⊙O2的直径,⊙O1的半径O1C交⊙O
2于点B,则AC和
⌒AB的长度的大小关系为 .
16.已知扇形的圆心角是150°,弧长为20πcm,则扇形的面积为 . 17.已知弓形的弦长等于半径R,则此弓形的面积为 .(劣弧为弓形的弧)
18.如图,一块边长为10cm的正方形木板ABCD在水平桌面上绕点D按顺时针方向旋转到A′B′C′D的位置时,顶点B从开始到结束所经过的路径长为( ) A.20cm B.20⌒2cm C.10πcm
D.
52πcm 12999数学网(www.dawendou.com)----免费课件、教案、试题下载
12999数学网(www.dawendou.com)
1、19如图,五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从点A到点B,甲虫沿着ADA⌒A1EA
2、A2FA
3、A3GB路线爬行,乙虫沿着Unit 12 My favorite subject is science曹毅.doc路线爬行,则下列结论正确的是( )
A.甲先到B点 B.乙先到B点 C.甲乙同时到达 D.无法确定 ⌒⌒⌒12999数学网(www.dawendou.com)----免费课件、教案、试题下载
24.4 弧长和扇形面积(1)
教学目标
了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.
通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=S扇形nR2360nR和扇形面积
180的计算公式,并应用这些公式解决一些题目.
nRnR
2重点:n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用.
180360 难点:两个公式的应用.
教学过程
一、复习引入
1.圆的周长公式是什么? 2.圆的面积公式是什么?3.什么叫弧长?
二、探索新知
(一)、(小黑板)请同学们独立完成下题:设圆的半径为R,则:
1、圆的周长可以看作______度的圆心角所对的弧.
1°的圆心角所对的弧长是_______.2°的圆心角所对的弧长是_______.
4°的圆心角所对的弧长是_______.„„
n°的圆心角所对的弧长是_______.
2、应用公式:请全体学生独立完成对“弯形管道——p110”的计算。
3、集体讲解。
4、练习p112第1题
(二)、如图:
像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
(小黑板),请同学们结合圆面积S=R2的公式,独立完成下题:
1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.
设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.
设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.
设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.
„„
设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.
nR
2 因此:在半径为R的圆中,圆心角n°的扇形
360
2、应用公式p111例1 学生先独立思考,在讨论,最后老师讲评和板书
3、练习:练习p112第3题
三、小结
让学生自己说出:n°的圆心角所对的弧长和扇形面积的计算公式
四、作业p114复习巩固
第1题、第2题
S扇形AOB
扇形面积教学设计(共10篇)
长方形面积教学设计(共8篇)
《面积和面积单位》教学设计(共3篇)
梯形面积教学设计(共17篇)
长方形面积教学评语(共18篇)
相关热词搜索: 扇形 教学设计 长和 面积 十二篇