材料需考虑刚度、强度、硬度、耐腐蚀性等,可选择铝合金或低碳合金钢等[5]。最终权衡用低碳合金钢,因为其具有良好的强度。
2.2.2 手指受力分析及优化设计
使用Creo 2.0有限元软件对手指进行应力分析。由于手指要承受表面压力和侧面扭矩力,故设置手指正 面承受2 000 N的压力,侧面承受1 400 N·m的扭矩力。
通过Creo2.0软件对零件的结构分析得到数据,如图3所示。
零件结构及受力分析采用有限元应力分析方法,即对分析部分按实际情况进行固定,对受力部分施加载荷。由图4可知,深 红色部分受力较大,故可以通过对深红色受力部分进行优化设计[6]。
由图5可知,机械手的最大位移在手指末端,为1.17×10-1 mm,最小位移在手指根部,为1×10-3 mm,由Creo2.0软件分析,在对手指施加3 000 N载荷时,手指仍能保证不低于9的安全系数,满足实际工作需求[7]。
3 机器人控制设计
3.1 气动控制回路设计
机械手动力装置采用了电机与气动混合控制。该动力控制系统由电机带动气泵工作,通过如图5所示的3个气动回路分别控制机械手的升降、松紧、回转三个动作。输出信号通过3个两位四通的电磁换向阀换向来实现上述动作,输入信号则通过压力继电器、行程开关等实现。通过调节节流阀的节流口大小控制空气流量大小,从而有效控制执行元件,达到支配机械手运动速度的目的。
3.2 电气控制设计
矿井救援及探测机器人的电气控制部分采用了S7-200可编程逻辑控制器(PLC),通过安装在手抓部分的各种传感器及行程开关等对输入部分进行控制,如视觉传感器、压力传感器等,其输出部分通过输出点控制执行元件如气缸、气马达等结合微型气泵控制手抓抓紧张开、手抓伸缩、手臂抬升等动作。如图6所示为机械手动作接线端子图。
通过编程软件编写程序,并下载到PLC芯片中,通过与气动控制系统的传感器装置、电磁换向阀、压力继电器、行程开关等输入信号的联合作用,通过输出装置如气缸等完成对该机械手动作的控制,从而实现对障碍物的自动清理[8-10]。
4 结束语
本文对救援及探测机器人的结构和控制进行了设计与分析,从三维造型到应力分析都采用了CAD/CAE软件,如Creo2.0,大大提高了设计效率。针对当前井下作业环境的复杂性,对机械手手指部分采用了气动技术与PLC相结合的控制方式。气动技术在该机械手中的应用,使设备可以应对比较复杂的环境。西门子组态系统在总控制中的应用,使得该装置在救援工作时更加稳定。
参考文献
李文军. 矿用机械手的设计[J]. 机械设计,2014(8): 29-30.
管永忠. 工业机械手的设计探析[J]. 装备制造技术,2011(5):50-51, 68.
曾德贵, 熊一君. 视觉技术在煤矿装配机械手定位算法改进[J]. 煤矿机械, 2013,34(1): 197-199.
葛伟伟, 张森, 李媛媛, 等. 井下搬运机械手的设计与仿真研究[J]. 煤矿机械,2015,34(2): 47-49.
刘小勇, 李荣丽, 姜生元, 等. 管内异物抓取机械手结构参数优化设计[J]. 机械设计, 2010, 27(9): 29-31.
王建军, 袁帮谊. 基于虚拟样机技术的搬运机械手仿真设计与研制[J]. 机械工程与自动化, 2010(2): 80-81.
孙继平. 矿井监控关键科学技术问题[C]. 北京: 中国煤矿信息化与自动化高层论坛暨中国矿业大学(北京)百年校庆学术会议, 2009: 16-26.
范勤, 何丽君. 基于ADAMS的卧卷夹钳虚拟样机建模及动力学仿真[J]. 起重运输机械, 2008(5): 55-58.
何献忠. 可编程控制器应用技术[M]. 北京: 清华大学出版社, 2007: 45-50.
刘德忠, 费仁元, (德)Stefan Hesse. 装配自动化[M]. 北京: 机械工业出版社, 2003.
相关热词搜索: 矿井 探测 救援 机器人 分析